				(<i>C</i>)
	(<i>A</i>)	(<i>B</i>)	(<i>a</i>)	(<i>b</i>)
O(1) - C(1)	1.366 (3)	1.371 (3)	1.364 (4)	1.374 (5)
O(1)C(9)	1.444 (3)	1.435 (3)	1.438 (4)	1.436 (6)
N-C(7)	1.464 (3)	1.469 (4)	1.475 (4)	1.467 (4)
N-C(11)	1.485 (3)	1.458 (3)	1.462 (4)	1.481 (4)
C(1)—C(6)	1.401 (3)	1.384 (4)	1.389 (5)	1.389 (5)
C(6)—C(7)	1-495 (3)	1.523 (3)	1.518 (4)	1-513 (5)
C(7)—C(8)	1.523 (3)	1.525 (4)	1.538 (5)	1.519 (5)
C(8)—C(9)	1.498 (4)	1.505 (5)	1.526 (4)	1.508 (5)
C(8)-C(10)	1.523 (3)	1.546 (4)	1.541 (5)	1.536 (4)
C(10)—C(11)	1.621 (3)	1.569 (4)	1.578 (4)	1.592 (5)
C(1)—O(1)—C(9)	119-9 (2)	113-6 (3)	114-4 (3)	115-1 (3)
C(7)—N—C(11)	104.7 (2)	108.0 (2)	109.5 (2)	108.8 (2)
O(1)-C(1)-C(6)	124-2 (2)	122.7 (2)	122.4 (3)	123.6 (3)
C(1)-C(6)-C(7)	116.6 (2)	121-6 (2)	121-2 (3)	120.8 (3)
N—C(7)—C(6)	118-4 (2)	114.5 (2)	112-1 (2)	110.5 (3)
NC(7)C(8)	104-5 (2)	101.8 (2)	107.5 (2)	106-0 (2)
C(6)C(7)-C(8)	108-9 (1)	111.7 (2)	113.6 (3)	111-8 (2)
C(7)—C(8)—C(9)	109-1 (2)	111.7 (2)	111.8 (2)	111-8 (3)
C(7)-C(8)-C(10)	102-2 (1)	105-8 (2)	104-3 (3)	104-1 (3)
C(9)-C(8)-C(10)	118-5 (2)	113-7 (3)	110.9 (2)	114 1 (3)
O(1)-C(9)-C(8)	110.4 (2)	111.7 (2)	112.0 (2)	111-9 (3)
C(8)—C(10)—C(11)	101.8 (2)	104-8 (2)	102.1 (2)	104.4 (2)
N-C(11)-C(10)	106.4 (2)	102-4 (2)	105.0 (2)	105-7 (2)
C(1)-O(1)-C(9)-C(8)	- 27.2 (3)	- 54.9 (3)	- 55.6 (3)	48.7 (4)
C(11)-N-C(7)-C(6)	- 162.0 (2)	- 78.1 (2)	123-4 (3)	92 2 (3)
C(11)-N-C(7)-C(8)	- 40.6 (2)	42.6 (2)	- 2.0 (3)	- 29 1 (3)
C(7)-N-C(11)-C(10)	19-4 (2)	- 38·3 (2)	22.1 (3)	12-1 (3)
N-C(7)-C(8)-C(9)	172-4 (2)	- 152.6 (2)	100.6 (3)	1576(3)
C(6)-C(7)-C(8)-C(9)	-60.1(2)	- 30.0 (3)	– 24·0 (4)	37.1 (4)
N-C(7)-C(8)-C(10)	46-1 (2)	- 28.4 (3)	- 19·3 (3)	34-0 (3)
C(6)—C(7)—C(8)—C(10)	173-6 (2)	94·2 (3)	- 144.0 (3)	- 86-5 (3)
C(7) - C(8) - C(9) - O(1)	58.0 (2)	58-4 (3)	52.8 (3)	- 57-8 (4)
C(10)—C(8)—C(9)—O(1)	174-3 (2)	-61.2 (3)	168.8 (2)	59-9 (4)
C(7)—C(8)—C(10)—C(11)	- 31.7 (2)	6.4 (3)	31.3 (3)	- 25.7 (3)
C(9)—C(8)—C(10)—C(11)	- 151-6 (2)	129.4 (2)	- 89.2 (3)	- 147.8 (3)
C(8) - C(10) - C(11) - N	8.4 (2)	18.2 (2)	- 33-1 (3)	9.0 (3)

hindrance between the methylene C(9) of the benzopyran ring system and H(C8) in the course of the cycloaddition. Thus, the chances of cycloaddition are considerably reduced as shown by the low yield (15%) (Tuge, Ueno & Ueda, 1981). The resultant isomer (A) shows an abnormally long bond length for C(10)—C(11) [1.621 (3) Å] due to the steric hindrance between the methoxycarbonyl group and the phenyl ring bonded to C(10).

Isomer (B) has a *cis* juncture at C(7)—C(8) and causes a fair approach of the methoxycarbonyl group to the benzopyran ring system. Isomer (C) also has a *cis* juncture at C(7)—C(8). Isomer (C) is composed of two pairs of racemic molecules. The conformations of these pairs are considerably different as shown in Table 3 and Fig. 1. The difference is mainly caused by inversions of C(9) and O(1) of the benzopyran rings and C(10) and C(11) of the pyrrole rings. Such different conformations of the two pairs are related to the high yield (30%) and the increased chance of cycloaddition. The bond lengths C(10)— C(11) for isomers the increased (B) and (C) are also unusually long as shown in Table 3. However, these lengths are shorter than that of isomer (A).

The variations of torsion angles of the benzopyran and pyrrole rings are remarkable (Table 3). These variations are caused by stress or strain in the pyrrole rings in the course of cycloaddition and by steric hindrances between the two phenyl rings and methoxycarbonyl moieties.

References

- FRENZ, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- SAKURAI, T. & KOBAYASHI, K. (1979). Rika Gaku Kenkyusho Hokoku, 55, 69-77. (In Japanese.)
- TUGE, O., UENO, K. & UEDA, I. (1981). Heterocycles, 16, 1503-1508.

Acta Cryst. (1991). C47, 845-848

Structure of 3-Benzoyl-2-phenylquinoxaline 1,4-Dioxide

BY YI WANG AND HANQING WANG

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

AND QIGUANG WANG

Instrumental Analysis and Research Center, Lanzhou University, Lanzhou 730000, People's Republic of China

(Received 26 April 1990; accepted 9 August 1990)

Abstract. $C_{21}H_{14}N_2O_3$, $M_r = 342.36$, monoclinic, $P2_1/c$, a = 7.520 (3), b = 36.048 (7), c = 12.801 (3) Å, $\beta = 100.51$ (2)°, V = 3415.5 Å³, Z = 8, $D_x =$ 1.332 g cm⁻³, λ (Mo K α) = 0.71073 Å, μ = 0.846 cm⁻¹, F(000) = 1424, T = 295 (1) K, R = 0.045 for 2796 unique observed reflections with $I > 3.0\sigma(I)$.

0108-2701/91/040845-04\$03.00 © 1991 International Union of Crystallography

The two independent molecules in the asymmetric unit have different conformations with respect to the orientation of phenyl ring and the benzoyl group. The dihedral angles between the phenyl ring and the pyrazine ring in the quinoxaline moiety are 68.6 and 107.2° for molecules *A* and *B*. There are also differences in the torsion angle about the C—C bond linking the benzene and keto groups, C(16)—C(15)— C(3)—C(2): -103.0 (*A*) and 103.7° (*B*).

Introduction. The extensive interest in the chemistry of quinoxaline 1,4-dioxide and over a thousand of its derivatives is prompted by their antibacterial and animal growth-promoting activities. In the last decade, quinoxaline 1,4-dioxide and some of its derivatives have also been extensively examined for mutagenicity (Negishi, Tanaka & Hayatsu, 1980; Beutin, Preller & Kowalski, 1981). As a part of a systematic investigation we previously reported photochemical reactions (Yan, Feng, Wang, Zhao, Tan & Xue, 1985; Lin & Wang, 1986a) and crystal structures (Lin & Cong, 1987; Cong, Lin & Wang, 1989; Wang, Wang & Wang, 1990) of several 2,3substituted guinoxaline 1.4-dioxides. In the present work we describe the crystal structure of 2-phenyl-3benzoylquinoxaline 1,4-dioxide (PBQO).

Experimental. The title compound was synthesized by a method reported previously (Issidorides & Haddadin, 1966; Lin & Wang, 1986b). A yellow crystal (thin rectangular plate) recrystallized by slow evaporation from a solution of chloroformacetonitrile with dimensions $0.4 \times 0.1 \times 0.8$ mm. Enraf-Nonius CAD-4 diffractometer with graphitemonochromated Mo $K\alpha$ radiation. Lattice parameters from least-squares refinement of 25 reflections with $9 < \theta < 14^{\circ}$. 6560 reflections measured, 5956 unique ($R_{int} = 0.032$), using $\omega - 2\theta$ scan technique within the ranges $1 \le \theta \le 25^\circ$, $0 \le h \le 8$, $0 \le k \le 40$, $-15 \le l \le 15$, $\sin \theta / \lambda = 0.5942$ Å⁻¹. Three standard reflections were measured every hour and showed a variation of less than 1.0%. 2796 independent reflections with $I > 3.0\sigma(I)$ considered observed. Data corrected for Lorentz and polarization factors, and absorption effects using ψ scans (from 0.909 to 0.999) on I).

The structure was solved by direct methods using MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). All non-H atoms were refined anisotropically by full-matrix least squares on F, minimizing $\sum w(|F_o| - |F_c|)^2$. A difference Fourier synthesis calculated at this stage of the refinement revealed all H atoms; these were included at the difference-map positions with arbitrary isotropic temperature factors, B = 4.0 Å² in the

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ with e.s.d.'s in parentheses

	x	y	Z	B_{eq}		
Molecule A						
N(1)	0.0055 (5)	0.13879(9)	0.2991(3)	3.85 (8)		
N(2)	0.0510(5)	0.1986 (1)	0.1701(3)	4.28 (8)		
0(1)	-0.0270(4)	0.11225 (8)	0.3606 (2)	5.12 (8)		
O(2)	0.0633 (5)	0.22682 (8)	0.1096 (3)	5.98 (9)		
O(3)	-0.2443(4)	0.1726 (1)	-0.0196 (3)	7.5 (1)		
C(1)	0.0861 (5)	0.1716 (1)	0.3443 (3)	3.60 (9)		
C(2)	-0.0361(5)	0.1356 (1)	0.1915 (3)	3.60 (9)		
C(3)	-0.0158 (5)	0·1662 (1)	0.1294 (3)	3.8 (1)		
C(4)	0.1089 (5)	0.2016(1)	0.2802 (3)	3.8 (1)		
C(5)	0.1859 (6)	0.2346 (1)	0.3243 (4)	4·7 (1)		
C(6)	0.2400 (7)	0.2366 (1)	0.4319 (4)	5.4 (1)		
C(7)	0.2191 (7)	0.2065 (1)	0.4958 (4)	5.4 (1)		
C(8)	0.1443 (6)	0.1744 (1)	0.4545 (3)	4.6 (1)		
C(9)	-0.0964 (6)	0.0991 (1)	0.1474 (3)	4.3 (1)		
C(10)	0.0201 (7)	0.0699 (1)	0.1533 (4)	5.7 (1)		
C(II)	-0.0304 (9)	0.0355 (1)	0.1161 (5)	7.6 (2)		
C(12)	-0.204(1)	0.0295 (2)	0.0673 (5)	8.4 (2)		
C(13)	-0.3241(8)	0.0581 (2)	0.0572 (5)	8.7 (2)		
C(14)	-0.2737(7)	0.0929 (2)	0·0970 (4)	6·4 (1)		
C(15)	-0.0838 (6)	0.1670 (1)	0.0103 (3)	4.6(1)		
C(16)	0.0449 (6)	0.1626 (1)	-0.0619(3)	3·8 (1)		
C(17)	0.2251 (6)	0.1542(2)	-0.0243 (4)	5.3 (1)		
C(18)	0.3419 (7)	0.1523 (2)	-0.0946 (4)	7.1 (2)		
C(19)	0.2841 (4)	0.1588 (2)	-0.2008(4)	6.9 (1)		
C(20)	0.1056 (7)	0.1664 (1)	-0.2387(3)	5.2(1)		
C(21)	-0.0120(6)	0.1681 (1)	-0.1700(3)	4.1 (1)		
Molecu	le B					
O(1)	0.4323 (4)	0.12693 (8)	0.2188 (2)	4.99 (8)		
O(2)	0.7044 (5)	0.18106 (9)	0.6041 (2)	5.81 (8)		
O(3)	0.4549 (4)	0.1087 (1)	0.6316 (3)	6.7 (1)		
N(1)	0.5106 (4)	0.13877 (9)	0.3108 (3)	3.54 (8)		
N(2)	0.6517 (5)	0.1670 (1)	0.5102 (3)	3.92 (8)		
C(1)	0.5768 (5)	0.1749 (1)	0.3200 (3)	3.43 (9)		
C(2)	0.5292 (5)	0.1167 (1)	0.3978 (3)	3.36 (9)		
C(3)	0.5969 (5)	0.1320 (1)	0.4970 (3)	3.60 (9)		
C(4)	0.6502 (5)	0.1896(1)	0.4205 (3)	3.7 (1)		
C(5)	0.7167 (6)	0.2255 (1)	0.4306 (4)	4.9 (1)		
C(6)	0.7100 (7)	0.2464 (1)	0.3420 (4)	5.9 (1)		
C(7)	0.6378 (7)	0.2327(1)	0.2416 (4)	5.5 (1)		
C(8)	0.5717 (6)	0.1974 (1)	0.2306 (3)	4.5 (1)		
C(9)	0.4839 (6)	0.0771 (1)	0.3834 (3)	4.3 (1)		
C(10)	0.5948 (8)	0.0543(1)	0.3407 (4)	6.9 (2)		
$C(\Pi)$	0.557(1)	0.0177(2)	0.3276 (5)	10.4 (2)		
C(12)	0.410(1)	0.0025(2)	0.3546 (6)	12.2 (3)		
C(13)	0.2972 (9)	0.0248 (2)	0-3950 (5)	10.0 (2)		
C(14)	0.3303 (7)	0.0617(2)	0.4110 (4)	6.7 (1)		
C(15)	0.5968 (6)	0.1110 (1)	0.5997 (3)	4.3 (1)		
C(16)	0.7674 (6)	0.0948 (1)	0.6569 (3)	3.70 (9)		
C(17)	0.9116 (6)	0.0880 (1)	0.6058 (3)	4.6(1)		
C(18)	1.0666 (7)	0.0720 (2)	0.6615 (4)	6.2 (1)		
C(19)	1.0783 (7)	0.0636 (2)	0.7667 (4)	6.8 (1)		
C(20)	0.9386 (8)	0.0706 (1)	0.8186 (4)	6.0 (1)		
U(21)	0.1812(1)	0.0820(1)	0.7634 (3)	4.9(1)		

The thermal parameters given for anisotropically refined atoms are the equivalent isotropic thermal parameters defined as: $4/3[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ac(\cos\beta)B(1,3)]$, where *a*, *b*, *c* are real-cell parameters and B(i,j) are anisotropic β 's.

subsequent calculations, but not refined. Final R = 0.045 and wR = 0.047 for 469 variables with $w = 1/\sigma^2(F_o)$ and S = 1.438, $(\Delta/\sigma)_{max} = 0.02$ in final refinement cycle, the difference electron density map was essentially featureless with $\Delta \rho = 0.40$ e Å⁻³. Atomic scattering factors from *International Tables for X-ray Crystallography* (1974, Vol. IV). All calculations on a PDP 11/44 computer using Enraf-Nonius *Structure Determination Package* (B. A. Frenz & Associates Inc., 1982) and *ORTEP*II (Johnson, 1976).

Fable	2.	Bond	lengths	(Å),	bond	angles	(°)	and
selecte	ed t	orsion	angles (°)) with	e.s.d.'	s in par	enth	eses

$\begin{split} & \text{N(1)} - \text{O(1)} & 1-291 (5) & 1-291 (4) \\ & \text{N(1)} - \text{C(2)} & 1-301 (5) & 1-298 (4) \\ & \text{N(1)} - \text{C(1)} & 1-404 (5) & 1-330 (5) \\ & \text{N(2)} - \text{C(3)} & 1-341 (5) & 1-330 (5) \\ & \text{N(2)} - \text{C(3)} & 1-344 (6) & 1-346 (5) \\ & \text{C(2)} - \text{C(3)} & 1-384 (6) & 1-386 (6) \\ & \text{C(3)} - \text{C(6)} & 1-389 (6) & 1-386 (6) \\ & \text{C(3)} - \text{C(6)} & 1-389 (6) & 1-386 (7) \\ & \text{C(4)} - \text{C(5)} & 1-389 (6) & 1-386 (7) \\ & \text{C(1)} - \text{C(8)} & 1-305 (7) & 1-364 (7) \\ & \text{C(1)} - \text{C(8)} & 1-305 (7) & 1-364 (7) \\ & \text{C(1)} - \text{C(8)} & 1-305 (7) & 1-355 (8) \\ & \text{C(1)} - \text{C(1)} & 1-365 (7) & 1-355 (8) \\ & \text{C(1)} - \text{C(1)} & 1-365 (7) & 1-352 (8) \\ & \text{C(1)} - \text{C(1)} & 1-365 (9) & 1-338 (1) \\ & \text{C(1)} - \text{C(1)} & 1-365 (9) & 1-338 (1) \\ & \text{C(1)} - \text{C(1)} & 1-356 (9) & 1-338 (1) \\ & \text{C(1)} - \text{C(1)} & 1-356 (9) & 1-338 (1) \\ & \text{C(1)} - \text{C(1)} & 1-358 (9) & 1-338 (1) \\ & \text{C(1)} - \text{C(1)} & 1-380 (9) & 1-338 (8) \\ & \text{C(1)} - \text{C(1)} & 1-388 (6) & 1-517 (6) \\ & \text{C(1)} - \text{C(1)} & 1-387 (6) & 1-387 (7) \\ & \text{C(1)} - \text{C(1)} & 1-387 (6) & 1-387 (7) \\ & \text{C(1)} - \text{C(1)} & 1-370 (7) & 1-368 (8) \\ & \text{C(20)} - \text{C(20)} & 1-370 (7) & 1-368 (8) \\ & \text{C(20)} - \text{C(21)} & 1-370 (7) & 1-368 (8) \\ & \text{C(1)} - \text{C(1)} & 1-387 (5) & 1-389 (6) \\ & \text{O(1)} - \text{N(1)} - \text{C(1)} & 1192 (3) & 1189 (3) \\ & \text{N(1)} - \text{C(1)} - \text{C(4)} & 1292 (4) & 1187 (4) \\ & \text{C(1)} - \text{C(4)} & 1292 (4) & 1187 (4) \\ & \text{C(1)} - \text{C(4)} & 1292 (4) & 1187 (4) \\ & \text{C(1)} - \text{C(4)} - \text{N(2)} & 1290 (4) & 1203 (4) \\ & \text{C(4)} - \text{N(2)} - \text{C(3)} & 12192 (4) & 1203 (4) \\ & \text{C(4)} - \text{N(2)} - \text{C(3)} & 1292 (4) & 1209 (4) \\ & \text{C(4)} - \text{N(2)} - \text{C(3)} & 1292 (4) & 1209 (4) \\ & \text{C(4)} - \text{C(5)} & 1202 (4) & 1209 (4) \\ & \text{C(4)} - \text{C(5)} & 1202 (4) & 1209 (4) \\ & \text{C(4)} - \text{C(5)} - \text{C(3)} & 1219 (4) & 1183 (4) \\ & \text{N(1)} - \text{C(1)} - \text{C(3)} & 1192 (3) & 1192 (3) \\ & \text{C(1)} - \text{C(1)} - \text{C(3)} & 1192 (4) & 1188 (4) \\ & \text{C(5)} - \text{C(6)} & 1185 (4) & 1188 (4) \\ & \text{C(6)} - \text{C(1)} - \text{C(1)} & 1207 (4) & 1122 (4) & 1183 (4) \\ & \text{N(1)} - \text{C(2)} - $		Molecule A	Molecule B
$\begin{split} N(1) &= C(2) & 1-291 (3) & 1-293 (4) \\ 1-201 (3) & 1-293 (5) & 1-293 (4) \\ N(1) &= C(1) & 1-404 (5) & 1-393 (5) \\ N(2) &= C(4) & 1-403 (5) & 1-406 (5) \\ C(2) &= C(3) & 1-384 (6) & 1-394 (5) \\ C(4) &= C(5) & 1-389 (6) & 1-386 (6) \\ C(5) &= C(6) & 1-367 (7) & 1-356 (7) \\ C(6) &= C(7) & 1-385 (7) & 1-392 (7) \\ C(7) &= C(8) & 1-403 (6) & 1-398 (6) \\ C(2) &= C(9) & 1-472 (6) & 1-471 (6) \\ C(9) &= C(10) & 1-361 (7) & 1-355 (8) \\ C(10) &= C(11) & 1-365 (7) & 1-352 (8) \\ C(10) &= C(11) & 1-365 (7) & 1-352 (8) \\ C(11) &= C(12) & 1-358 (9) & 1-330 (12) \\ C(12) &= C(13) & 1-365 (9) & 1-338 (11) \\ C(13) &= C(14) & 1-380 (9) & 1-336 (8) \\ C(14) &= C(9) & 1-390 (7) & 1-385 (8) \\ C(15) &= C(16) & 1-464 (7) & 1-478 (6) \\ C(15) &= C(16) & 1-464 (7) & 1-478 (6) \\ C(16) &= C(17) & 1-371 (7) & 1-385 (8) \\ C(19) &= C(20) & 1-370 (7) & 1-365 (8) \\ C(20) &= C(21) & 1-370 (7) & 1-368 (8) \\ C(19) &= C(20) & 1-370 (7) & 1-368 (8) \\ C(19) &= C(20) & 1-370 (7) & 1-368 (8) \\ C(19) &= C(20) & 1-370 (7) & 1-368 (8) \\ C(10) &= C(1-C(4) & 129-2 (3) & 129-2 (4) \\ N(1) &= C(1) &= C(3) & 120-2 (4) & 120-2 (4) \\ N(1) &= C(1) &= C(3) & 120-2 (4) & 120-2 (4) \\ N(1) &= C(1) &= C(3) & 120-2 (4) & 120-3 (3) \\ C(4) &= N(2) &= C(3) & 120-2 (4) & 120-4 (3) \\ C(4) &= N(2) &= C(3) & 120-2 (4) & 120-4 (3) \\ C(4) &= N(2) &= C(3) & 120-2 (4) & 120-4 (4) \\ C(4) &= C(5) &= C(6) & 118-5 (4) & 118-8 (4) \\ C(5) &= C(6) & C(7) & 120-7 (4) & 121-6 (5) \\ C(7) &= C(3) & 119-2 (3) & 119-2 (3) & 119-2 (3) \\ C(4) &= N(2) &= C(3) & 121-5 (4) & 120-4 (4) \\ C(4) &= N(2) &= C(3) & 119-2 (3) & 119-2 (3) \\ C(4) &= N(2) &= C(3) & 119-2 (3) & 119-2 (3) \\ C(4) &= N(2) &= C(3) & 119-2 (4) & 118-7 (4) \\ C(1) &= C(2) &= C(3) & 119-2 (4) & 118-7 (4) \\ C(1) &= C(3) &= C(14) & 121-5 (4) & 122-4 (4) \\ N(1) &= C(2) &= C(3) & 119-4 (4) & 119-3 (4) \\ C(4) &= C(2) &= C(3) & 119-4 (4) & 119-3 (4) \\ C(4) &= C(2) &= C(3) & 119-4 (4) & 119-3 (4) \\ C(1) &= C(1) &= C(13) & 119-4 (4) & 119-3 (4) \\ C(1) &= C(1) &= C(13) & 119-4 (4) & 119-3 (4) \\ C(1) &= C(1) &= C(13) & 119-4 (4) & 119-3 (4) \\ C($	N(1) - O(1)	1.291 (5)	1.291 (4)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N(2) - O(2) N(1) - O(2)	1.361 (5)	1.355 (5)
$\begin{array}{ccccc} 1:3: 1:3: 1:3: 1:3: 1:3: 1:3: 1:3: 1:3$	N(1) - C(1)	1.404(5)	1.393(5)
$\begin{array}{c} N(2) = C(4) & 1-403 \ (5) & 1-406 \ (5) \\ C(2) = C(3) & 1-384 \ (6) & 1-394 \ (5) \\ C(4) = C(5) & 1-385 \ (7) & 1-385 \ (7) & 1-385 \ (7) \\ C(5) = C(6) & 1-367 \ (7) & 1-385 \ (7) \\ C(7) = C(8) & 1-303 \ (7) & 1-364 \ (7) \\ C(7) = C(8) & 1-403 \ (6) & 1-398 \ (6) \\ C(2) = C(9) & 1-472 \ (6) & 1-471 \ (6) \\ C(9) = C(10) & 1-361 \ (7) & 1-355 \ (8) \\ C(10) = C(11) & 1-365 \ (7) & 1-352 \ (8) \\ C(11) = C(12) & 1-388 \ (9) & 1-340 \ (12) \\ C(12) = C(13) & 1-365 \ (7) & 1-352 \ (8) \\ C(14) = C(9) & 1-390 \ (7) & 1-385 \ (8) \\ C(13) = C(14) & 1-380 \ (9) & 1-333 \ (11) \\ C(13) = C(15) & 1-518 \ (6) & 1-517 \ (6) \\ C(15) = C(16) & 1-464 \ (7) & 1-478 \ (6) \\ C(15) = C(16) & 1-464 \ (7) & 1-478 \ (6) \\ C(16) = C(17) & 1-387 \ (6) & 1-387 \ (7) \\ C(17) = C(18) & 1-369 \ (8) & 1-378 \ (6) \\ C(18) = C(19) & 1-371 \ (7) & 1-368 \ (8) \\ C(20) = C(20) & 1-370 \ (7) & 1-365 \ (8) \\ C(20) = C(21) & 1-357 \ (7) & 1-375 \ (7) \\ C(21) = C(16) & 1-387 \ (5) & 1-389 \ (6) \\ \hline O(1) = N(1) = C(2) & 119 \ (3) \ N(1) = C(2) \\ C(12) = C(16) & 1-387 \ (5) & 1-389 \ (6) \\ \hline O(1) = N(1) = C(4) & 120 \ (2) \ 120 \ (2) \ 120 \ (2) \ ($	N(2) - C(3)	1.341 (5)	1.330 (5)
$\begin{array}{ccccc} C(2) & \begin{array}{c} 1 \cdot 384 & (6) & 1 \cdot 394 & (5) \\ C(4) - C(5) & 1 \cdot 389 & (6) & 1 \cdot 386 & (6) \\ C(5) - C(6) & 1 \cdot 357 & (7) & 1 \cdot 392 & (7) \\ C(7) - C(8) & 1 \cdot 433 & (6) & 1 \cdot 398 & (6) \\ C(2) - C(8) & 1 \cdot 433 & (6) & 1 \cdot 398 & (6) \\ C(2) - C(9) & 1 \cdot 472 & (6) & 1 \cdot 471 & (6) \\ C(9) - C(10) & 1 \cdot 361 & (7) & 1 \cdot 355 & (8) \\ C(11) - C(11) & 1 \cdot 365 & (7) & 1 \cdot 352 & (8) \\ C(10) - C(12) & 1 \cdot 358 & (9) & 1 \cdot 340 & (12) \\ C(12) - C(13) & 1 \cdot 365 & (9) & 1 \cdot 338 & (11) \\ C(13) - C(14) & 1 \cdot 380 & (9) & 1 \cdot 363 & (8) \\ C(14) - C(9) & 1 \cdot 390 & (7) & 1 \cdot 385 & (8) \\ C(15) - C(16) & 1 \cdot 464 & (7) & 1 \cdot 478 & (6) \\ C(15) - C(16) & 1 \cdot 464 & (7) & 1 \cdot 478 & (6) \\ C(15) - C(16) & 1 \cdot 464 & (7) & 1 \cdot 478 & (6) \\ C(16) - C(17) & 1 \cdot 387 & (6) & 1 \cdot 387 & (7) \\ C(17) - C(18) & 1 \cdot 369 & (8) & 1 \cdot 378 & (6) \\ C(18) - C(19) & 1 \cdot 371 & (7) & 1 \cdot 366 & (8) \\ C(20) - C(21) & 1 \cdot 377 & (7) & 1 \cdot 375 & (7) \\ C(21) - C(16) & 1 \cdot 387 & (5) & 1 \cdot 389 & (6) \\ \hline O(1) - N(1) - C(2) & 119 \cdot 5 & (3) & 119 \cdot 8 & (3) \\ O(1) - N(1) - C(2) & 119 \cdot 5 & (3) & 119 \cdot 8 & (3) \\ N(1) - C(1) - C(4) & 119 \cdot 2 & (4) & 118 \cdot 7 & (4) \\ C(1) - C(4) - C(5) & 1202 & (4) & 1202 & (4) \\ N(2) - C(4) - C(5) & 1202 & (4) & 1209 & (4) \\ C(4) - C(5) - C(6) & 118 \cdot 5 & (4) & 118 \cdot 8 & (4) \\ C(5) - C(6) - C(7) & 120 \cdot 7 & (4) & 121 \cdot 6 & 5) \\ C(7) - C(8) - C(1) & 119 \cdot 3 & (4) & 120 \cdot 4 & (4) \\ N(2) - C(3) - C(15) & 112 \cdot 6 & (4) & 120 \cdot 4 & (4) \\ N(2) - C(3) - C(15) & 112 \cdot 6 & (4) & 120 \cdot 4 & (4) \\ N(2) - C(3) - C(15) & 112 \cdot 6 & (4) & 120 \cdot 4 & (4) \\ N(2) - C(3) - C(15) & 112 \cdot 6 & (4) & 122 \cdot 4 & (4) \\ N(1) - C(2) - C(3) & 119 \cdot 9 & (4) & 119 \cdot 3 & (3) \\ N(2) - C(3) - C(15) & 112 \cdot 28 & (4) & 122 \cdot 4 & (4) \\ N(1) - C(2) - C(9) & 117 \cdot 6 & (117 \cdot 5 & (5) \\ C(3) - C(16) - C(17) & 121 \cdot 4 & (4) & 122 \cdot 3 & (4) \\ C(4) - N(2) - C(16) & 119 \cdot 7 & (4) & 119 \cdot 4 & (4) \\ C(2) - C(9) - C(14) & 121 \cdot 5 & (5) & 122 \cdot 4 & (4) \\ C(17) - C(18) - C(19) & 119 \cdot 19 & (4) & 119 \cdot 4 & (4) \\ C(17) - C(18) - C(19) & 119 & 19 & 19 & 19 & (4) \\ C(17) - C(16) - C(17) & 118 + 9 &$	N(2)—C(4)	1.403 (5)	1.406 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)—C(3)	1.384 (6)	1.394 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)—C(5)	1.389 (6)	1.386 (6)
$\begin{array}{c} C(6)-C(7) & 1.385 (7) & 1.392 (7) \\ C(7)-C(8) & 1.350 (7) & 1.364 (7) \\ C(1)-C(8) & 1.403 (6) & 1.398 (6) \\ C(2)-C(9) & 1.472 (6) & 1.471 (6) \\ C(9)-C(10) & 1.361 (7) & 1.355 (8) \\ C(10)-C(11) & 1.365 (7) & 1.352 (8) \\ C(11)-C(12) & 1.358 (9) & 1.340 (12) \\ C(12)-C(13) & 1.365 (9) & 1.338 (11) \\ C(13)-C(14) & 1.380 (9) & 1.63 (8) \\ C(14)-C(9) & 1.390 (7) & 1.385 (8) \\ C(3)-C(15) & 1.518 (6) & 1.517 (6) \\ C(15)-C(16) & 1.464 (7) & 1.478 (6) \\ C(16)-C(17) & 1.387 (6) & 1.387 (7) \\ C(16)-C(17) & 1.387 (6) & 1.387 (7) \\ C(17)-C(18) & 1.369 (8) & 1.378 (6) \\ C(18)-C(19) & 1.371 (7) & 1.368 (8) \\ C(20)-C(21) & 1.370 (7) & 1.368 (8) \\ C(20)-C(21) & 1.370 (7) & 1.368 (8) \\ C(21)-C(16) & 1.387 (5) & 1.389 (6) \\ \hline O(1)-N(1)-C(2) & 119.5 (3) & 119.8 (3) \\ N(1)-C(1)-C(4) & 119.2 (3) & 118.9 (3) \\ O(1)-N(1)-C(2) & 119.5 (3) & 119.8 (3) \\ N(1)-C(1)-C(4) & 119.2 (4) & 118.7 (4) \\ C(1)-C(4)-N(2) & 119.0 (4) & 118.3 (4) \\ N(2)-C(4)-C(5) & 120.2 (4) & 120.2 (4) \\ C(1)-C(4)-N(2) & 119.0 (4) & 118.3 (4) \\ N(2)-C(4)-C(5) & 120.2 (4) & 120.4 (4) \\ C(1)-C(4)-C(5) & 120.2 (4) & 120.4 (4) \\ C(1)-C(3)-C(1) & 119.3 (4) & 120.0 (4) \\ C(4)-N(2)-C(3) & 119.4 (4) & 119.3 (3) \\ O(2)-N(2)-C(3) & 119.4 (4) & 119.3 (3) \\ O(2)-N(2)-C(3) & 119.4 (4) & 119.4 (3) \\ C(2)-C(9)-C(14) & 117.6 (4) & 112.4 (4) \\ C(2)-C(9)-C(14) & 117.6 (5) & 122.4 (4) \\ C(1)-C(12)-C(13) & 119.2 (5) & 117.7 (6) \\ C(13)-C(14)-C(2) & 119.7 (4) & 119.4 (4) \\ O(3)-C(15)-C(16) & 123.5 (4) & 123.0 (4) \\ C(17)-C(18)-C(18) & 119.4 (4) & 119.4 (4) \\ O(3)-C(15)-C(16) & 119.5 (4) & 119.4 (4) \\ O(3)-C(15)-C(16) & 119.5 (4) & 119.4 (4) \\ O(3)-C(15)-C(16) & 119.5 (4) & 119.4 (4) \\ O(3)-C(15)-C(16) & 123.5 (4) & 123.0 (4) \\ C(17)-C(18)-C(2) & 119.7 (4) & 1$	C(5)—C(6)	1.367 (7)	1.356 (7)
$\begin{array}{c} C(1) & -C(8) & 1-30 & (7) & 1-364 & (7) \\ C(1) & -C(8) & 1-471 & (6) \\ C(2) & -C(9) & 1-472 & (6) & 1-471 & (6) \\ C(9) & -C(10) & 1-361 & (7) & 1-355 & (8) \\ C(10) & -C(11) & 1-365 & (7) & 1-352 & (8) \\ C(10) & -C(12) & 1-358 & (9) & 1-340 & (12) \\ C(12) & -C(13) & 1-365 & (9) & 1-338 & (11) \\ C(13) & -C(14) & 1-380 & (9) & 1-363 & (8) \\ C(14) & -C(9) & 1-390 & (7) & 1-385 & (8) \\ C(3) & -C(15) & 1-518 & (6) & 1-517 & (6) \\ C(15) & -C(16) & 1-444 & (7) & 1-478 & (6) \\ C(16) & -C(17) & 1-387 & (6) & 1-387 & (7) \\ C(17) & -C(18) & 1-369 & (8) & 1-378 & (7) \\ C(18) & -C(19) & 1-371 & (7) & 1-368 & (8) \\ C(19) & -C(20) & 1-370 & (7) & 1-365 & (8) \\ C(20) & -C(21) & 1-357 & (7) & 1-375 & (7) \\ C(21) & -C(16) & 1-387 & (5) & 1-389 & (6) \\ \end{array}$ $\begin{array}{c} O(1) - N(1) - C(1) & 119 - 2 & (3) & 119 + 8 & (3) \\ N(1) - C(1) - C(4) & 120 - 2 & (3) & 120 - 2 & (4) \\ N(1) - C(1) - C(4) & 120 - 2 & (3) & 120 - 2 & (4) \\ N(1) - C(1) - C(4) & 120 - 2 & (3) & 120 - 2 & (4) \\ N(1) - C(1) - C(4) & 119 - 2 & (4) & 118 - 7 & (4) \\ C(1) - C(4) - N(2) & 1190 & (4) & 118 - 3 & (4) \\ N(2) - C(4) - C(5) & 1202 & (4) & 120 + 8 & (4) \\ C(1) - C(4) - N(2) & 1190 & (4) & 118 - 3 & (4) \\ N(2) - C(3) - C(1) & 119 - 3 & (4) & 120 - 0 & (4) \\ C(4) - N(2) - C(3) & 112 - 5 & (3) \\ C(7) - C(8) - C(1) & 119 - 3 & (4) & 120 - 0 & (4) \\ C(4) - N(2) - C(3) & 119 - 0 & (4) & 119 - 2 & (3) \\ C(4) - N(2) - C(3) & 119 - 0 & (4) & 119 - 2 & (3) \\ C(4) - N(2) - C(3) & 119 - 0 & (4) & 119 - 0 & (4) \\ N(1) - C(2) - C(9) & 123 - 4 & (4) & 122 - 4 & (4) \\ C(2) - C(9) - C(14) & 121 - 6 & (5) & 120 - 6 & (6) \\ C(13) - C(14) - C(12) & 119 - 7 & (6) & 122 - 7 & (6) \\ C(12) - C(13) - C(14) & 121 - 6 & (5) & 120 - 6 & (6) \\ C(13) - C(14) - C(2) & 119 - 7 & (6) & 122 - 6 & (7) \\ C(13) - C(14) - C(2) & 119 - 7 & (6) & 122 - 3 & (7) \\ C(13) - C(14) - C(2) & 119 - 7 & (6) & 122 - 3 & (7) \\ C(13) - C(14) - C(2) & 119 - 7 & (4) & 119 - 6 & (4) \\ C(2) - C(9) - C(14) & 121 - 3 & (5) & 122 - 3 & (7) \\ C(13) - C(16) - C(17) & 121 - 4 & (4) & 121 - 3 & (4) \\ C(13) - C(16) - C(17)$	C(6)—C(7)	1.385 (7)	1.392 (7)
$\begin{array}{c} C(1) = C(3) & 1^{-4}33 & (6) & 1^{-3}36 & (6) \\ C(2) = C(10) & 1^{-3}61 & (7) & 1^{-3}55 & (8) \\ C(10) = C(11) & 1^{-3}65 & (7) & 1^{-3}55 & (8) \\ C(11) = C(12) & 1^{-3}58 & (9) & 1^{-3}38 & (11) \\ C(13) = C(14) & 1^{-3}80 & (9) & 1^{-3}63 & (8) \\ C(14) = C(9) & 1^{-3}90 & (7) & 1^{-3}85 & (8) \\ C(13) = C(14) & 1^{-3}80 & (9) & 1^{-3}63 & (8) \\ C(14) = C(9) & 1^{-3}90 & (7) & 1^{-3}85 & (8) \\ C(15) = C(16) & 1^{-2}16 & 1^{-2}13 & (6) \\ C(15) = C(16) & 1^{-2}16 & 1^{-2}13 & (6) \\ C(15) = C(16) & 1^{-2}16 & 1^{-2}13 & (6) \\ C(16) = C(17) & 1^{-3}187 & (6) & 1^{-3}171 & (7) & 1^{-3}368 & (8) \\ C(19) = C(20) & 1^{-3}70 & (7) & 1^{-3}365 & (8) \\ C(20) = C(21) & 1^{-3}371 & (7) & 1^{-3}365 & (8) \\ C(20) = C(21) & 1^{-3}371 & (7) & 1^{-3}368 & (8) \\ C(21) = C(16) & 1^{-3}87 & (5) & 1^{-3}89 & (6) \\ \end{array}$	C(1) = C(8)	1.402 (6)	1.304 (7)
$\begin{array}{c} C(2) &= C(1) \\ C(1) &= C(2) \\ C(1) &= C(1) \\ C(1) &= C(2) \\ C(1) &= C(1) \\ C(1) &= C(2) \\ C(2) &= C(3) \\ C(1) &= C(2) \\$	C(1) - C(8)	1.472 (6)	1.471 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2) = C(10)	1.361(7)	1.355 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) - C(11)	1.365 (7)	1.352 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11) - C(12)	1.358 (9)	1.340 (12)
$\begin{array}{cccccc} C(13)C(14) & 1 \cdot 380 \ (9) & 1 \cdot 363 \ (8) \\ C(14)C(9) & 1 \cdot 390 \ (7) & 1 \cdot 385 \ (8) \\ C(3)C(15) & 1 \cdot 518 \ (6) & 1 \cdot 517 \ (6) \\ C(15)C(16) & 1 \cdot 464 \ (7) & 1 \cdot 478 \ (6) \\ C(16)C(17) & 1 \cdot 337 \ (6) & 1 \cdot 387 \ (7) \\ C(17)C(18) & 1 \cdot 369 \ (8) & 1 \cdot 378 \ (6) \\ C(18)C(19) & 1 \cdot 371 \ (7) & 1 \cdot 368 \ (8) \\ C(19)C(20) & 1 \cdot 370 \ (7) & 1 \cdot 365 \ (8) \\ C(20)C(21) & 1 \cdot 357 \ (7) & 1 \cdot 375 \ (7) \\ C(21)C(16) & 1 \cdot 387 \ (5) & 1 \cdot 389 \ (6) \\ \hline O(1)N(1)C(2) & 119 \cdot 2 \ (3) & 118 \cdot 9 \ (3) \\ O(1)N(1)C(2) & 119 \cdot 5 \ (3) & 119 \cdot 8 \ (3) \\ O(1)N(1)C(2) & 119 \cdot 5 \ (3) & 119 \cdot 8 \ (3) \\ O(1)N(1)C(2) & 119 \cdot 5 \ (3) & 119 \cdot 8 \ (3) \\ O(1)N(1)C(4) & 120 \cdot 6 \ (3) & 121 \cdot 1 \ (4) \\ C(3)C(1)C(4) & 119 \cdot 2 \ (4) & 118 \cdot 7 \ (4) \\ C(1)C(4)N(2) & 119 \cdot 0 \ (4) & 118 \cdot 3 \ (4) \\ N(2)C(4)C(5) & 120 \cdot 2 \ (4) & 120 \cdot 9 \ (4) \\ C(1)C(4)N(2) & 119 \cdot 0 \ (4) & 118 \cdot 3 \ (4) \\ N(2)C(4)C(5) & 120 \cdot 2 \ (4) & 120 \cdot 9 \ (4) \\ C(1)C(4)C(5) & 120 \cdot 2 \ (4) & 120 \cdot 9 \ (4) \\ C(4)N(2)C(3) & 121 \cdot 5 \ (4) & 120 \cdot 9 \ (4) \\ C(4)N(2)C(3) & 121 \cdot 5 \ (4) & 120 \cdot 9 \ (4) \\ C(4)N(2)C(3) & 121 \cdot 5 \ (4) & 120 \cdot 9 \ (4) \\ C(4)N(2)C(3) & 121 \cdot 5 \ (4) & 122 \cdot 9 \ (4) \\ C(2)C(3)C(15) & 122 \cdot 8 \ (4) & 122 \cdot 4 \ (4) \\ N(1)C(2)C(3) & 119 \cdot 9 \ (4) \ 119 \cdot 9 \ (4) \\ C(2)C(9)C(14) & 121 \cdot 6 \ (5) \ C(3)-C(15) & 122 \cdot 8 \ (4) \ 122 \cdot 4 \ (4) \\ N(1)C(2)C(3) & 119 \cdot 9 \ (4) \ 119 \cdot 9 \ (4) \\ C(2)C(9)C(14) & 121 \cdot 6 \ (4) \ 122 \cdot 9 \ (4) \\ C(2)C(9)C(14) & 121 \cdot 6 \ (4) \ 122 \cdot 9 \ (4) \\ C(1)C(1)C(14) & 121 \cdot 3 \ (5) \ 122 \cdot 3 \ (7) \\ C(1)C(13)C(14) & 121 \cdot 3 \ (5) \ 122 \cdot 3 \ (7) \\ C(1)C(15)C(16) & 123 \cdot 5 \ (4) \ 123 \cdot 9 \ (4) \ 119 \cdot 6 \ (4) \\ C(2)C(9)C(14) & 121 \cdot 5 \ (5) \ 107 \cdot 6 \ (5) \ C(15)C(16) & 123 \cdot 5 \ (4) \ 123 \cdot 9 \ (4) \ 119 \cdot 6 \ (4) \\ C(1)C(1)C(18) & 119 \cdot 7 \ (4) \ 119 \cdot 9 \ (4) \ 119 \cdot 6 \ (4) \\ C(1)C(16)C(17) & 121 \cdot 4 \ (4) \ 121 \cdot 3 \ (4) \\ C(1)C(16)C(17) & 121 \cdot 4 \ (4) \ 123 \cdot 6 \ (5)$	C(12)—C(13)	1.365 (9)	1.338 (11)
$\begin{array}{cccccc} C(14)C(9) & 1.393 (7) & 1.385 (8) \\ C(3)C(15) & 1.518 (6) & 1.517 (6) \\ C(15)C(16) & 1.464 (7) & 1.478 (6) \\ C(16)C(17) & 1.387 (6) & 1.387 (7) \\ C(17)C(18) & 1.369 (8) & 1.378 (6) \\ C(18)C(19) & 1.371 (7) & 1.365 (8) \\ C(20)C(21) & 1.357 (7) & 1.375 (7) \\ C(21)C(16) & 1.387 (5) & 1.389 (6) \\ \hline \\ O(1)N(1)C(1) & 119-2 (3) & 118-9 (3) \\ O(1)N(1)C(2) & 121-4 (3) & 121-3 (3) \\ C(1)N(1)C(2) & 119-5 (3) & 119-8 (3) \\ N(1)C(1)C(4) & 120-2 (3) & 120-2 (4) \\ N(1)C(1)C(4) & 120-2 (3) & 120-2 (4) \\ N(1)C(1)C(8) & 120-6 (3) & 121-1 (4) \\ C(1)C(4)N(2) & 119-0 (4) & 118-3 (4) \\ C(1)C(4)N(2) & 119-0 (4) & 118-3 (4) \\ C(1)C(4)C(5) & 120-2 (4) & 120-9 (4) \\ C(1)C(4)C(5) & 120-2 (4) & 120-9 (4) \\ C(1)C(4)C(5) & 120-8 (4) & 120-8 (4) \\ C(4)C(5)C(6) & 118-5 (4) & 112-6 (5) \\ C(6)C(7)C(8) & 121-5 (4) & 120-1 (5) \\ C(7)C(8)C(1) & 119-3 (4) & 120-0 (4) \\ C(4)N(2)O(2) & 120-0 (3) & 119-2 (3) \\ O(2)N(2)C(3) & 121-1 (3) & 121-5 (3) \\ N(2)C(3)C(15) & 114-0 (4) & 114-4 (3) \\ C(2)C(3)C(15) & 122-8 (4) & 122-4 (4) \\ N(1)C(2)C(9) & 117-6 (4) & 118-6 (3) \\ C(3)C(2)C(9) & 117-6 (4) & 118-6 (3) \\ C(3)C(1)C(14) & 121-6 (5) & 122-8 (4) \\ C(2)C(9)C(10) & 120-9 (4) & 117-5 (5) \\ C(10)C(11)C(12) & 119-7 (6) & 122-1 (7) \\ C(11)C(12)C(13) & 119-2 (5) & 117-7 (6) \\ C(12)C(13)C(14) & 121-5 (5) & 122-8 (4) & 122-4 (4) \\ C(2)C(9)C(10) & 120-9 (4) & 119-0 (4) \\ C(10)C(1)C(12) & 119-7 (6) & 122-1 (7) \\ C(11)C(12)C(13) & 119-2 (5) & 117-7 (6) \\ C(12)C(13)C(14) & 121-5 (17-7 (6) \\ C(12)C(13)C(14) & 121-5 (17-7 (6) \\ C(13)C(15)C(16) & 123-5 (4) & 123-0 (4) \\ C(15)C(16)C(21) & 118-9 (4) & 119-4 (4) \\ C(15)C(16)C(21) & 118-9 (4) & 119-3 (4) \\ C(15)C(16)C(21) & 118-9 (4) & 119-3 (4) \\ C(15)C(16)C(21) & 118-9 (4) & 119-3 (4) \\ C(15)C(16)C(21) & 118-9 (4) & 119$	C(13)—C(14)	1.380 (9)	1.363 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)—C(9)	1.390 (7)	1.385 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) - C(15)	1.518 (6)	1.517 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) = O(3)	1.210(3)	1.479 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) - C(16)	1.387 (6)	1.478(0) 1.387(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17) - C(18)	1.369 (8)	1.378(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18) - C(19)	1.371(7)	1.368 (8)
$\begin{array}{ccccc} C(20)-C(21) & 1.357 (7) & 1.375 (7) \\ C(21)-C(16) & 1.387 (5) & 1.389 (6) \\ \hline \\ O(1)-N(1)-C(2) & 121.4 (3) & 121.3 (3) \\ C(1)-N(1)-C(2) & 119.5 (3) & 119.8 (3) \\ N(1)-C(1)-C(4) & 120.2 (3) & 120.2 (4) \\ N(1)-C(1)-C(4) & 120.2 (3) & 120.2 (4) \\ N(1)-C(1)-C(4) & 119.2 (4) & 118.7 (4) \\ C(1)-C(4)-N(2) & 119.0 (4) & 118.3 (4) \\ N(2)-C(4)-C(5) & 120.4 (4) & 120.8 (4) \\ C(1)-C(4)-C(5) & 120.8 (4) & 120.8 (4) \\ C(4)-C(5)-C(6) & 118.5 (4) & 118.8 (4) \\ C(5) & C(6) & C(7) & 120.7 (4) & 121.6 (5) \\ C(6)-C(7)-C(8) & 121.5 (4) & 120.1 (5) \\ C(7)-C(8)-C(1) & 119.3 (4) & 120.0 (4) \\ C(4)-N(2)-O(2) & 120.0 (3) & 119.2 (3) \\ O(2)-N(2)-C(3) & 121.1 (3) & 121.5 (3) \\ N(2)-C(3)-C(15) & 114.0 (4) & 114.4 (3) \\ C(2)-C(3)-C(15) & 122.8 (4) & 122.4 (4) \\ N(1)-C(2)-C(9) & 117.6 (4) & 118.6 (3) \\ C(3)-C(2)-C(10) & 120.9 (4) & 119.0 (4) \\ N(1)-C(2)-C(9) & 117.6 (4) & 118.6 (3) \\ C(3)-C(2)-C(9) & 117.6 (4) & 118.6 (3) \\ C(3)-C(2)-C(9) & 123.4 (4) & 122.4 (4) \\ C(2)-C(9)-C(14) & 117.5 (5) & 122.8 (5) & 120.8 (6) \\ C(10)-C(11)-C(12) & 119.7 (6) & 122.1 (7) \\ C(11)-C(12)-C(13) & 119.2 (5) & 117.7 (6) \\ C(12)-C(13)-C(14) & 121.5 (5) & 122.3 (7) \\ C(13)-C(15)-C(16) & 129.5 (4) & 119.4 (4) \\ C(15)-C(16)-C(21) & 119.7 (4) & 117.7 (4) \\ C(3)-C(15)-C(16) & 129.5 (4) & 119.4 (4) \\ C(15)-C(16)-C(21) & 119.7 (4) & 117.7 (4) \\ C(15)-C(16)-C(21) & 119.7 (4) & 117.4 (4) \\ C(15)-C(16)-C(21) & 119.7 (4) & 119.4 (4) \\ C(15)-C(16)-C(21) & 118.9 (4) & 119.8 (4) \\ C(15)-C(16)-C(21) & 118.9 (4) & 119.4 (5) \\ C(16)-C(17)-C(18) & 12$	C(19) - C(20)	1.370 (7)	1.365 (8)
$\begin{array}{ccccc} C(21)-C(16) & 1\cdot387 (5) & 1\cdot389 (6) \\ \hline O(1)-N(1)-C(1) & 119\cdot2 (3) & 118\cdot9 (3) \\ O(1)-N(1)-C(2) & 121\cdot4 (3) & 121\cdot3 (3) \\ C(1)-N(1)-C(2) & 119\cdot5 (3) & 119\cdot8 (3) \\ N(1)-C(1)-C(4) & 120\cdot2 (3) & 120\cdot2 (4) \\ N(1)-C(1)-C(4) & 120\cdot2 (3) & 120\cdot2 (4) \\ N(1)-C(1)-C(4) & 119\cdot2 (4) & 118\cdot7 (4) \\ C(1)-C(4)-N(2) & 119\cdot0 (4) & 118\cdot3 (4) \\ N(2)-C(4)-C(5) & 120\cdot2 (4) & 120\cdot9 (4) \\ C(1)-C(4)-C(5) & 120\cdot8 (4) & 120\cdot8 (4) \\ C(4)-C(5)-C(6) & 118\cdot5 (4) & 118\cdot8 (4) \\ C(5)-C(6)-C(7) & 120\cdot7 (4) & 121\cdot6 (5) \\ C(6)-C(7)-C(8) & 121\cdot5 (4) & 120\cdot1 (5) \\ C(7)-C(8)-C(1) & 119\cdot3 (4) & 120\cdot0 (4) \\ C(4)-N(2)-O(2) & 120\cdot0 (3) & 119\cdot2 (3) \\ C(4)-N(2)-C(3) & 121\cdot1 (3) & 121\cdot5 (3) \\ N(2)-C(3)-C(15) & 114\cdot0 (4) & 114\cdot4 (3) \\ C(2)-C(3)-C(15) & 122\cdot8 (4) & 122\cdot4 (4) \\ N(1)-C(2)-C(9) & 117\cdot6 (4) & 112\cdot6 (3) \\ C(3)-C(2)-C(9) & 117\cdot6 (4) & 112\cdot4 (3) \\ C(2)-C(9)-C(10) & 120\cdot9 (4) & 119\cdot6 (4) \\ C(2)-C(9)-C(10) & 120\cdot9 (4) & 119\cdot6 (4) \\ C(2)-C(9)-C(14) & 117\cdot5 (5) & 122\cdot8 (5) & 120\cdot8 (6) \\ C(10)-C(1)-C(12) & 119\cdot7 (6) & 122\cdot1 (7) \\ C(10)-C(1)-C(12) & 119\cdot7 (6) & 122\cdot1 (7) \\ C(1)-C(1)-C(12) & 119\cdot7 (6) & 122\cdot1 (7) \\ C(1)-C(1)-C(13) & 119\cdot2 (5) & 117\cdot7 (6) \\ C(12)-C(13)-C(16) & 123\cdot5 (4) & 123\cdot0 (4) \\ C(15)-C(16)-C(21) & 119\cdot5 (4) & 119\cdot4 (4) \\ C(15)-C(16)-C(21) & 119\cdot7 (4) & 119\cdot4 (4) \\ C(15)-C(16)-C(21) & 119\cdot4 (4) & 119\cdot4 (4) \\ C(15)-C(16)-C(21) & 118\cdot9 (4) & 119\cdot4 (4) \\ C(15)-C(16)-C(21) & 118\cdot9 (4) & 119\cdot4 (5) \\ C(15)-C(16)-C(21) & 119\cdot4 (5) & $	C(20)-C(21)	1.357 (7)	1.375 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)C(16)	1.387 (5)	1.389 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1) = N(1) = C(1)	119.2 (3)	118.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1) - N(1) - C(2)	121.4(3)	$121 \cdot 3 (3)$
$\begin{array}{cccccc} N(1)-C(1)-C(4) & 1202 (3) & 1202 (4) \\ N(1)-C(1)-C(8) & 120-6 (3) & 121-1 (4) \\ C(8)-C(1)-C(4) & 119-2 (4) & 118-7 (4) \\ C(1)-C(4)-N(2) & 119-0 (4) & 118-3 (4) \\ N(2)-C(4)-C(5) & 120-2 (4) & 120-9 (4) \\ C(1)-C(4)-C(5) & 120-8 (4) & 120-8 (4) \\ C(4)-C(5)-C(6) & 118-5 (4) & 118-8 (4) \\ C(5)-C(6)-C(7) & 120-7 (4) & 121-6 (5) \\ C(6)-C(7)-C(8) & 121-5 (4) & 120-1 (5) \\ C(7)-C(8)-C(1) & 119-3 (4) & 120-0 (4) \\ C(4)-N(2)-O(2) & 120-0 (3) & 119-2 (3) \\ C(4)-N(2)-C(3) & 118-9 (4) & 119-3 (3) \\ O(2)-N(2)-C(3) & 121-1 (3) & 121-5 (3) \\ N(2)-C(3)-C(15) & 114-0 (4) & 114+4 (3) \\ C(2)-C(3)-C(15) & 122-8 (4) & 122-4 (4) \\ N(1)-C(2)-C(9) & 117-6 (4) & 118-6 (3) \\ C(3)-C(2)-C(9) & 117-6 (4) & 118-6 (3) \\ C(3)-C(2)-C(9) & 117-6 (4) & 118-6 (3) \\ C(2)-C(9)-C(14) & 117-5 (5) & 122-8 (5) & 120-8 (6) \\ C(10)-C(1)-C(12) & 119-7 (6) & 122-1 (7) \\ C(11)-C(12)-C(13) & 119-2 (5) & 117-7 (6) \\ C(12)-C(13)-C(14) & 127-6 (5) & 119-5 (6) \\ C(12)-C(15)-C(16) & 129-5 (4) & 119-5 (6) \\ C(12)-C(15)-C(16) & 129-5 (4) & 119-5 (6) \\ C(12)-C(15)-C(16) & 129-5 (4) & 119-5 (6) \\ C(13)-C(15)-C(16) & 129-5 (4) & 119-4 (4) \\ C(3)-C(15)-C(16) & 129-5 (4) & 119-4 (4) \\ C(3)-C(15)-C(16) & 129-5 (4) & 119-4 (4) \\ C(15)-C(16)-C(21) & 119-7 (4) & 117-7 (4) \\ C(15)-C(16)-C(21) & 119-7 (4) & 119-4 (4) \\ C(15)-C(16)-C(21) & 119-7 (4) & 119-4 (4) \\ C(15)-C(16)-C(21) & 119-7 (4) & 119-4 (4) \\ C(17)-C(18)-C(19) & 121-2 (5) & 120-0 (5) \\ C(18)-C(19)-C(19) & 120-0 (5) & 121-4 (5) \\ \end{array}$	C(1) - N(1) - C(2)	119.5 (3)	119.8 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1) - C(1) - C(4)	120.2 (3)	120.2 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-C(1)-C(8)	120.6 (3)	121.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8) - C(1) - C(4)	119.2 (4)	118.7 (4)
$\begin{split} & N(2) = C(4) = C(5) & 120 \cdot 2 \cdot (4) & 120 \cdot 9 \cdot (4) \\ & C(1) = C(4) = C(5) & 120 \cdot 8 \cdot (4) & 118 \cdot 8 \cdot (4) \\ & C(4) = C(5) = C(6) & 118 \cdot 5 \cdot (4) & 118 \cdot 8 \cdot (4) \\ & C(5) = C(6) = C(7) & 120 \cdot 7 \cdot (4) & 121 \cdot 6 \cdot (5) \\ & C(6) = C(7) = C(8) & 121 \cdot 5 \cdot (4) & 120 \cdot 1 \cdot (5) \\ & C(7) = C(8) = C(1) & 119 \cdot 3 \cdot (4) & 120 \cdot 0 \cdot (4) \\ & C(4) = N(2) = O(2) & 120 \cdot 0 \cdot (3) & 119 \cdot 2 \cdot (3) \\ & C(4) = N(2) = O(2) & 123 \cdot 0 \cdot (4) & 1124 \cdot 5 \cdot (3) \\ & N(2) = C(3) = C(15) & 114 \cdot 0 \cdot (4) & 114 \cdot 4 \cdot (3) \\ & C(2) = C(3) = C(15) & 114 \cdot 0 \cdot (4) & 114 \cdot 4 \cdot (3) \\ & C(2) = C(3) = C(15) & 122 \cdot 8 \cdot (4) & 122 \cdot 4 \cdot (4) \\ & N(1) = C(2) = C(3) & 119 \cdot 0 \cdot (4) & 119 \cdot 0 \cdot (4) \\ & N(1) = C(2) = C(9) & 117 \cdot 6 \cdot (4) & 1122 \cdot 4 \cdot (4) \\ & C(2) = C(9) = C(14) & 121 \cdot 6 \cdot (4) & 122 \cdot 4 \cdot (4) \\ & C(2) = C(9) = C(14) & 117 \cdot 5 \cdot (5) \\ & C(9) = C(10) & 120 \cdot 9 \cdot (4) & 117 \cdot 5 \cdot (5) \\ & C(9) = C(10) & 120 \cdot 9 \cdot (4) & 117 \cdot 5 \cdot (5) \\ & C(9) = C(11) & 122 \cdot 8 \cdot (5) & 120 \cdot 8 \cdot (6) \\ & C(10) = C(1) = C(12) & 119 \cdot 7 \cdot (6) & 122 \cdot 1 \cdot (7) \\ & C(13) = C(14) & 117 \cdot 5 \cdot (5) & 117 \cdot 7 \cdot (6) \\ & C(12) = C(13) & 119 \cdot 2 \cdot (5) & 117 \cdot 7 \cdot (6) \\ & C(12) = C(13) & 119 \cdot 2 \cdot (5) & 117 \cdot 7 \cdot (6) \\ & C(13) = C(14) = C(13) & 119 \cdot 2 \cdot (5) & 117 \cdot 7 \cdot (6) \\ & C(13) = C(16) = C(17) & 121 \cdot 4 \cdot (4) & 122 \cdot 3 \cdot (7) \\ & C(3) = C(15) = C(16) & 119 \cdot 5 \cdot (4) & 119 \cdot 4 \cdot (4) \\ & O(3) = C(15) = C(16) & 119 \cdot 5 \cdot (4) & 119 \cdot 4 \cdot (4) \\ & O(3) = C(15) = C(16) & 119 \cdot 5 \cdot (4) & 119 \cdot 4 \cdot (4) \\ & C(15) = C(16) = C(17) & 121 \cdot 4 \cdot (4) & 121 \cdot 3 \cdot (4) \\ & C(15) = C(16) = C(21) & 118 \cdot 9 \cdot (4) & 119 \cdot 8 \cdot (4) \\ & C(16) = C(17) = C(18) & 119 \cdot 1 \cdot (4) & 119 \cdot 3 \cdot (4) \\ & C(16) = C(17) = C(18) & 119 \cdot 1 \cdot (4) & 119 \cdot 3 \cdot (4) \\ & C(16) = C(19) = C(20) & 120 \cdot 0 \cdot (5) \\ & C(18) = C(19) = C(20) & 120 \cdot $	C(1) - C(4) - N(2)	119.0 (4)	118.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2) - C(4) - C(5)	120.2(4)	120.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) = C(4) = C(5)	120.8 (4)	120.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) = C(5) = C(7)	120.7(4)	121.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6) - C(7) - C(8)	121.5(4)	120.1(5)
$\begin{array}{cccc} C(4) & -N(2) & -O(2) & 120 \cdot 0 & (3) & 119 \cdot 2 & (3) \\ C(4) & -N(2) & -C(3) & 118 \cdot 9 & (4) & 119 \cdot 3 & (3) \\ O(2) & -N(2) & -C(3) & 121 \cdot 1 & (3) & 121 \cdot 5 & (3) \\ N(2) & -C(3) & -C(2) & 123 \cdot 0 & (4) & 123 \cdot 0 & (4) \\ N(2) & -C(3) & -C(15) & 114 \cdot 0 & (4) & 114 \cdot 4 & (3) \\ C(2) & -C(3) & -C(15) & 122 \cdot 8 & (4) & 122 \cdot 4 & (4) \\ N(1) & -C(2) & -C(3) & 119 \cdot 0 & (4) & 119 \cdot 0 & (4) \\ N(1) & -C(2) & -C(9) & 117 \cdot 6 & (4) & 1122 \cdot 4 & (4) \\ C(2) & -C(9) & -C(10) & 120 \cdot 9 & (4) & 119 \cdot 6 & (4) \\ C(2) & -C(9) & -C(10) & 120 \cdot 9 & (4) & 119 \cdot 6 & (4) \\ C(2) & -C(9) & -C(10) & 120 \cdot 9 & (4) & 117 \cdot 5 & (5) \\ C(10) & -C(10) & -C(14) & 117 \cdot 5 & (5) & 120 \cdot 8 & (6) \\ C(10) & -C(11) & -C(12) & 119 \cdot 7 & (6) & 122 \cdot 1 & (7) \\ C(13) & -C(14) & -C(13) & 119 \cdot 2 & (5) & 117 \cdot 7 & (6) \\ C(13) & -C(15) & -C(16) & 119 \cdot 5 & (4) & 117 \cdot 7 & (4) \\ C(3) & -C(15) & -C(16) & 119 \cdot 5 & (4) & 117 \cdot 7 & (4) \\ C(3) & -C(15) & -C(16) & 119 \cdot 5 & (4) & 119 \cdot 4 & (4) \\ O(3) & -C(15) & -C(16) & 119 \cdot 5 & (4) & 119 \cdot 4 & (4) \\ C(15) & -C(16) & -C(21) & 119 \cdot 7 & (4) & 119 \cdot 4 & (4) \\ C(15) & -C(16) & -C(21) & 119 \cdot 7 & (4) & 119 \cdot 3 & (4) \\ C(17) & -C(16) & -C(21) & 118 \cdot 9 & (4) & 119 \cdot 8 & (4) \\ C(17) & -C(16) & -C(21) & 118 \cdot 9 & (4) & 119 \cdot 3 & (4) \\ C(17) & -C(16) & -C(21) & 118 \cdot 9 & (4) & 119 \cdot 3 & (4) \\ C(17) & -C(18) & -C(19) & 121 \cdot 2 & (5) & 120 \cdot 0 & (5) \\ C(18) & -C(19) & -C(120) & 120 \cdot 0 & (5) & 121 \cdot 4 & (5) \\ \end{array}$	C(7) - C(8) - C(1)	119-3 (4)	120.0 (4)
$\begin{array}{ccccc} C(4) & -N(2) - C(3) & 118 \cdot 9 & (4) & 119 \cdot 3 & (3) \\ O(2) - N(2) - C(3) & 121 \cdot 1 & (3) & 121 \cdot 5 & (3) \\ N(2) - C(3) - C(12) & 123 \cdot 0 & (4) & 123 \cdot 0 & (4) \\ N(2) - C(3) - C(15) & 114 \cdot 0 & (4) & 114 \cdot 4 & (3) \\ C(2) - C(3) - C(15) & 122 \cdot 8 & (4) & 122 \cdot 4 & (4) \\ N(1) - C(2) - C(3) & 119 \cdot 0 & (4) & 119 \cdot 0 & (4) \\ N(1) - C(2) - C(9) & 117 \cdot 6 & (4) & 112 \cdot 4 & (4) \\ C(2) - C(9) - C(10) & 120 \cdot 9 & (4) & 112 \cdot 2 \cdot 4 & (4) \\ C(2) - C(9) - C(10) & 120 \cdot 9 & (4) & 112 \cdot 2 \cdot 4 & (4) \\ C(2) - C(9) - C(10) & 120 \cdot 9 & (4) & 112 \cdot 5 & (5) \\ C(9) - C(10) - C(14) & 117 \cdot 5 & (4) & 117 \cdot 5 & (5) \\ C(10) - C(1) - C(12) & 119 \cdot 7 & (6) & 122 \cdot 1 & (7) \\ C(10) - C(13) - C(14) & 121 \cdot 3 & (5) & 122 \cdot 3 & (7) \\ C(13) - C(14) - C(9) & 119 \cdot 6 & (5) & 119 \cdot 5 & (6) \\ C(3) - C(15) - C(16) & 119 \cdot 5 & (4) & 119 \cdot 4 & (4) \\ C(3) - C(15) - C(16) & 119 \cdot 5 & (4) & 119 \cdot 4 & (4) \\ C(15) - C(16) - C(21) & 119 \cdot 7 & (4) & 119 \cdot 4 & (4) \\ C(15) - C(16) - C(21) & 118 \cdot 9 & (4) & 119 \cdot 8 & (4) \\ C(17) - C(18) - C(19) & 121 \cdot 2 & (5) & 127 \cdot 4 & (5) \\ C(18) - C(19) - C(19) & 121 \cdot 2 & (5) & 127 \cdot 4 & (5) \\ \end{array}$	C(4)-N(2)-O(2)	120.0 (3)	119.2 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)N(2)C(3)	118.9 (4)	119-3 (3)
$\begin{split} &N(2) - \mathbb{C}(3) - \mathbb{C}(2) & 1230 \ (4) & 1230 \ (4) \\ &N(2) - \mathbb{C}(3) - \mathbb{C}(15) & 1140 \ (4) & 1144 \ (3) \\ &\mathbb{C}(2) - \mathbb{C}(3) - \mathbb{C}(15) & 122.8 \ (4) & 122.4 \ (4) \\ &N(1) - \mathbb{C}(2) - \mathbb{C}(3) & 1190 \ (4) & 1190 \ (4) \\ &N(1) - \mathbb{C}(2) - \mathbb{C}(9) & 117.6 \ (4) & 118.6 \ (3) \\ &\mathbb{C}(3) - \mathbb{C}(2) - \mathbb{C}(9) & 123.4 \ (4) & 122.4 \ (4) \\ &\mathbb{C}(2) - \mathbb{C}(9) - \mathbb{C}(10) & 120.9 \ (4) & 119.6 \ (4) \\ &\mathbb{C}(2) - \mathbb{C}(9) - \mathbb{C}(11) & 122.8 \ (5) & 120.8 \ (6) \\ &\mathbb{C}(10) - \mathbb{C}(1) - \mathbb{C}(11) & 122.8 \ (5) & 120.8 \ (6) \\ &\mathbb{C}(10) - \mathbb{C}(1) - \mathbb{C}(12) & 119.7 \ (6) & 122.1 \ (7) \\ &\mathbb{C}(11) - \mathbb{C}(12) - \mathbb{C}(13) & 119.2 \ (5) & 117.7 \ (6) \\ &\mathbb{C}(13) - \mathbb{C}(14) - \mathbb{C}(9) & 119.6 \ (5) & 119.5 \ (6) \\ &\mathbb{C}(3) - \mathbb{C}(15) - \mathbb{C}(16) & 119.5 \ (4) & 117.7 \ (4) \\ &\mathbb{C}(3) - \mathbb{C}(15) - \mathbb{C}(16) & 123.5 \ (4) & 123.0 \ (4) \\ &\mathbb{C}(15) - \mathbb{C}(16) - \mathbb{C}(21) & 119.7 \ (4) & 117.4 \ (4) \\ &\mathbb{C}(15) - \mathbb{C}(16) - \mathbb{C}(21) & 119.7 \ (4) & 119.4 \ (4) \\ &\mathbb{C}(15) - \mathbb{C}(16) - \mathbb{C}(21) & 119.7 \ (4) & 119.4 \ (4) \\ &\mathbb{C}(17) - \mathbb{C}(18) & 119.1 \ (4) & 119.3 \ (4) \\ &\mathbb{C}(17) - \mathbb{C}(18) & 119.1 \ (4) & 119.3 \ (4) \\ &\mathbb{C}(17) - \mathbb{C}(18) - \mathbb{C}(19) & 121.2 \ (5) & 120.0 \ (5) \\ &\mathbb{C}(18) - \mathbb{C}(19) - \mathbb{C}(20) & 120.0 \ (5) & 121.4 \ (5) \\ \end{split}$	O(2) - N(2) - C(3)	121.1 (3)	121.5 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2) - C(3) - C(2)	123.0 (4)	123.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2) = C(3) = C(15)	114.0 (4)	114.4(3) 122.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1) = C(3) = C(3)	122.8(4) 119.0(4)	122.4(4) 119.0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1) - C(2) - C(9)	117.6(4)	118.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) - C(2) - C(9)	123.4 (4)	122.4 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2) - C(9) - C(10)	120.9 (4)	119.6 (4)
$\begin{array}{cccccc} C(10)C(9)C(14) & 117\cdot 5 & (4) & 117\cdot 5 & (5) \\ C(9)C(10)C(11) & 122\cdot 8 & (5) & 120\cdot 8 & (6) \\ C(10)C(11)C(12) & 119\cdot 7 & (6) & 122\cdot 1 & (7) \\ C(11)C(12)C(13) & 119\cdot 2 & (5) & 117\cdot 7 & (6) \\ C(12)C(13)C(14) & 121\cdot 3 & (5) & 122\cdot 3 & (7) \\ C(13)C(14)C(9) & 119\cdot 6 & (5) & 119\cdot 5 & (6) \\ C(3)C(15)C(16) & 119\cdot 5 & (4) & 119\cdot 4 & (4) \\ O(3)C(15)C(16) & 123\cdot 5 & (4) & 123\cdot 0 & (4) \\ C(15)C(16)C(21) & 119\cdot 7 & (4) & 121\cdot 3 & (4) \\ C(15)C(16)C(21) & 118\cdot 9 & (4) & 119\cdot 8 & (4) \\ C(16)C(17)C(18) & 119\cdot 1 & (4) & 119\cdot 3 & (4) \\ C(17)C(18)C(19) & 121\cdot 2 & (5) & 120\cdot 0 & (5) \\ C(18)C(19)C(20) & 120\cdot 0 & (5) & 121\cdot 4 & (5) \\ \end{array}$	C(2)C(9)C(14)	121.6 (4)	122.9 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(10) - C(9) - C(14)	117.5 (4)	117.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9) - C(10) - C(11)	122.8 (5)	120.8 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) - C(11) - C(12)	119.7 (6)	122.1 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12) - C(12) - C(13)	121.3(5)	122.3 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12) - C(13) - C(14)	1215(5)	119.5 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) - C(15) - O(3)	117.0(4)	117.7(4)
$\begin{array}{ccccc} O(3)-C(15)-C(16) & 123\cdot 5 & (4) & 123\cdot 0 & (4) \\ C(15)-C(16)-C(17) & 121\cdot 4 & (4) & 121\cdot 3 & (4) \\ C(15)-C(16)-C(21) & 119\cdot 7 & (4) & 119\cdot 0 & (4) \\ C(17)-C(16)-C(21) & 118\cdot 9 & (4) & 119\cdot 8 & (4) \\ C(16)-C(17)-C(18) & 119\cdot 1 & (4) & 119\cdot 3 & (4) \\ C(17)-C(18)-C(19) & 121\cdot 2 & (5) & 120\cdot 0 & (5) \\ C(18)-C(19)-C(20) & 120\cdot 0 & (5) & 121\cdot 4 & (5) \\ \end{array}$	C(3) - C(15) - C(16)	119.5 (4)	119.4 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(3) - C(15) - C(16)	123.5 (4)	123.0 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)—C(16)—C(17)	121.4 (4)	121.3 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)-C(16)-C(21)	119.7 (4)	119.0 (4)
$C(16) - C(17) - C(18)$ $119 \cdot 1 (4)$ $119 \cdot 3 (4)$ $C(17) - C(18) - C(19)$ $121 \cdot 2 (5)$ $120 \cdot 0 (5)$ $C(18) - C(19) - C(20)$ $120 \cdot 0 (5)$ $121 \cdot 4 (5)$	C(17) - C(16) - C(21)	118.9 (4)	119.8 (4)
$C(17) - C(18) - C(19) = 121 \cdot 2 (5) = 120 \cdot 0 (5)$ $C(18) - C(19) - C(20) = 120 \cdot 0 (5) = 121 \cdot 4 (5)$	C(16) - C(17) - C(18)	119.1 (4)	119.3 (4)
CHOP-CHYP-CHOP 1200131 12194131	C(17) - C(18) - C(19)	121.2 (5)	120.0 (3)
C(19) - C(20) - C(21) 110.4 (4) 110.3 (4)	C(18) - C(19) - C(20) C(19) - C(20) - C(21)	120·0 (5) 110·4 (4)	121.4 (3)
C(20) - C(21) - C(16) = 121.4 (4) = 120.1 (5)	C(20) - C(21) - C(16)	121.4(4)	120.1 (5)
		(7)	())
$C(16) - C(15) - C(3) - C(2) - 103 \cdot 0$ $D(1) - C(2) - C(3) - C(2) - 103 \cdot 0$ C(10) - C(2) - C(3) - C(3	C(16) - C(15) - C(3) - C(2)	- 103.0	103.7

d Discussion. Final atomic coordinates and equivalent isotropic temperature factors are listed in Table 1* and bond lengths and bond angles are given in Table 2. Fig. 1 shows the conformation of the two crystal-lographically independent molecules, A and B, with the atom-labeling system. The two independent molecules in the asymmetric unit have different conformations with respect to the orientation of phenyl ring and the benzoyl group. The phenyl rings in both molecules are planar. The dihedral angles between the phenyl ring and the pyrazine ring in the quinoxaline moiety are 68.6 and 107.2° for molecules A and B; the torsion angles are -103.0 (A) and 103.7° (B) for C(16)—C(15)—C(3)—C(2) and -68.8 (A) and 72.2° (B) for N(1)—C(2)—C(9)—C(10).

Although the molecules have different conformations, the corresponding bond distances and angles for molecules A and B are very similar, the mean differences are 0.008 (7) Å and 0.6 (5)° respectively. Bond lengths involving the C(12) atom in molecule B are shorter than usual [C(11)—C(12) = 1.340 (12), C(12)—C(13) = 1.338 (1) Å].

* Lists of structure factors, anisotropic thermal parameters, least-squares planes and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53470 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Molecular conformation of 2-phenyl-3-benzoylquinoxaline 1,4-dioxide (molecules A and B) with the atom-labeling system. Thermal ellipsoids are drawn at the 50% probability level.

The bond distances in the heterocyclic ring are similar to the values found in other substituted quinoxaline di-N-oxides like 6-chloro-3-ethoxycarbonyl-2-methylquinoxaline 1,4-dioxide (Mac-Donald & Arora, 1981), 2-methylcarboethoxyquinoxaline 1,4-dioxide (Lin & Cong, 1987), 2-[N-(2-hydroxyethyl)carboxamide]-3-methylquinoxaline 1,4-dioxide (Bartczak, Galdecki, Wolf & Mak, 1988), quinoxaline 1,4-dioxide and 2,3-dimethylquinoxaline 1,4-dioxide (Cong, Lin & Wang, 1989), and 2-methyl-3-phenylacryloylquinoxaline 1,4-dioxide (Wang, Wang & Wang, 1990). The dihedral angles between the benzene ring and the pyrazine ring are 1.7 and $2 \cdot 1^{\circ}$ for molecules A and B respectively, which indicates that the quinoxaline parts are essentially planar.

The packing diagram of PBQO is illustrated in Fig. 2. The crystal structure of PBQO is stabilized by

Fig. 2. Unit-cell packing diagram.

van der Waals interactions. There are no intermolecular distances between non-H atoms less 3.127 Å.

References

- B. A. FRENZ & ASSOCIATES INC. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- BARTCZAK, T. J., GALDECKI, Z., WOLF, W. & MAK, T. C. W. (1988). J. Cryst. Spectrosc. Res. 18, 165–174.
- BEUTIN, L., PRELLER, E. & KOWALASKI, B. (1981). Antimicrob. Agents Chemother. 20, 336–343.
- Cong, Q.-Z., LIN, S.-K. & WANG, H.-Q. (1989). Jiegou Huaxue, 8, 31–36.
- Issidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem. 31, 4067–4068.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- LIN, S.-K. & CONG, Q.-Z. (1987). J. Mol. Struct. 159, 279-286.
- LIN, S.-K. & WANG, H.-Q. (1986a). Heterocycles, 24, 659-664.
- LIN, S.-K. & WANG, H.-Q. (1986b). Youji Huaxue, 4, 298-300. (In Chinese).
- MacDonald, L. & Arora, S. K. (1981). Acta Cryst. B37, 1445– 1446.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- NEGISHI, T., TANAKA, K. & HAYATSU, H. (1980). Chem. Pharm. Bull. 28, 1347–1349.
- WANG, Y., WANG, M. & WANG, H.-Q. (1990). Jiegou Huaxue, 9, 203–206.
- YAN, R.-Z., FENG, L.-B., WANG, H.-Q., ZHAO, R.-C., TAN, P.-Z. & XUE, F.-Q. (1985). Acta Chim. Sin. 43, 498–501. (In Chinese.)